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Abstract

Wave propagation in a porous elastic medium saturated by two immiscible fluids is investigated. It is shown that
there exist three dilatational waves and one transverse wave propagating with different velocities. It is found that the
velocities of all the three longitudinal waves are influenced by the capillary pressure, while the velocity of transverse
wave does not at all. The problem of reflection and refraction phenomena due to longitudinal and transverse wave inci-
dent obliquely at a plane interface between uniform elastic solid half-space and porous elastic half-space saturated by
two immiscible fluids has been analyzed. The amplitude ratios of various reflected and refracted waves are found to be
continuous functions of the angle of incidence. Expression of energy ratios of various reflected and refracted waves are
derived in closed form. The amplitude ratios and energy ratios have been computed numerically for a particular model
and the results obtained are depicted graphically. It is verified that during transmission there is no dissipation of energy
at the interface. Some particular cases have also been reduced from the present formulation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The problems of reflection and refraction of elastic waves from the discontinuity between two elastic
half-spaces are of great interest in various fields e.g. geophysics, seismology and petroleum engineering.
These problems not only provide better information about the internal composition of the Earth but are
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Nomenclature

o velocity of longitudinal wave in elastic half-space
B velocity of transverse wave in elastic half-space
Ay p Lame’s parameters

Te stress in elastic half-space

Ts stress in porous elastic half-space

(1) pressures in fluid phase i

u, displacement vector in the porous elastic solid
¢e, e potentials in elastic half-space

Pe density of the elastic half-space

K; bulk modulus of fluid phase ¢

v; velocity of fluid phase i

s velocity of solid phase

O volume fraction of the solid phase

o volume fraction of the fluid phase i

Gg shear modulus of the porous solid

K intrinsic permeability

Ky frame or drained bulk modulus

K, relative permeability of fluid phase i

E viscosity of fluid phase i

Pr intrinsic averaged pressure of fluid phase i
) volume averaged density of fluid phase i

(ps) volume averaged density of porous solid

k wavenumber

u; displacement vector in the fluid phase i

ug displacement vector in the porous elastic solid
14 phase velocity

o} angular frequency

X1, X5, X5 velocities of compressional waves in porous solid
Xy velocity of transverse wave in porous solid

¢, ¥, n scalar potentials

H,G,J vector potentials

1 unit tensor matrix

r,n Position vector, unit normal vector

Py capillary pressure

1 V-1

also very helpful in exploration of valuable materials beneath the Earth surface e.g. water, oils, minerals,
hydro-carbon etc. Many problems of reflection and refraction of elastic waves from boundaries have
been discussed by the researchers in the past and have appeared in the open literature (see Ewing et al.,
1957; Achenbach, 1973; Aki and Richards, 1980; Sheriff and Geldart, 1995; Udias, 1999, among several
others).

Biot (1956a,b) formulated the dynamical equations and constitutive relations for a fluid saturated por-
ous elastic solid. Since then a number of dynamical problems in the porous media have been investigated by
the researchers. Notable among them are Deresiewicz (1960, 1962, 1964, 1967), Geertsma and Smith (1961),
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Biot (1962), Yew and Jogi (1976), Plona (1980), Berryman (1981), Hajra and Mukhopadhyay (1982), de la
Cruz and Spanos (1985), Wu et al. (1990), de la Cruz et al. (1992), Sharma and Gogna (1992), Cieszko and
Kubik (1998), Gurevich and Schoenberg (1999) among several others. Basically, there are three widely
acceptable theories of porous media: one is Biot’s theory, second is mixture theory and third is the averag-
ing theory or hybrid mixture theory. Literature is extensive on mixture theories. Some of the references are
Morland (1972), Bedford and Drumheller (1978), Bowen (1980, 1982) and Hassanizadeh and Gray (1990).
Bowen (1982) has shown that Biot’s theory and mixture theory are equivalent, if the coupling parameter
between the state variable of the solid skeleton and the pore fluid, introduced by Biot, is neglected. Mixture
theory for porous media saturated by fluids includes the concept of volume fraction to characterize the
microstructure of the medium. Hybrid mixture theory (HMT) is an upscaling approach based on thermo-
dynamical principals and is used to develop deterministic models of porous media. Recently, Lu and
Hanyga (2005) presented a comprehensive comparison of these theories.

Biot (1956a,b) developed constitutive relations and the equations of motion, including inertial terms for
a liquid saturated porous medium. He has also discussed the propagation of plane harmonic elastic waves
and shown that in an isotropic, homogeneous fluid saturated porous medium, there are two P-waves
namely fast P-wave and slow P-wave, and one S-wave propagating with different velocities. The problems
of wave propagation in porous elastic medium saturated by two or more fluids together are also of great
interest in seismology. Tuncay and Corapcioglu (1997) developed a theory of wave propagation in isotropic
poroelastic media saturated by two immiscible Newtonian fluids. They applied the volume average tech-
nique to explore the wave propagation characteristics in a linearly elastic medium saturated by two immis-
cible Newtonian fluids. The equations for low frequency wave propagation in a poroelastic medium
saturated by two immiscible fluids are developed. They have shown that in such a medium, there exist three
compressional waves and one transverse wave. The first two compressional waves and one transverse wave
are similar to those predicted by Biot (1956a,b), while the third compressional wave arises due to the pres-
sure difference between the fluid phase and is dependent on the slope of the capillary pressure-saturation
relation. The third compressional wave was also predicted by Garg and Nayfeh (1986) and Santos et al.
(1990b). Santos et al. (1990a) proposed a method to determine the elastic constants for isotropic porous
media saturated by two fluids. Gray and Schrefler (2001) derived the equilibrium effective stress acting
on the solid phase of a porous medium containing two immiscible fluid phases and obtained the relation
between the fluid pressures at the fluid—fluid interface. Wei and Muraleetharan (2002a,b) developed a con-
tinuum theory of multiphase porous media that is capable of rigorously characterizing the interactions
among coexisting components. They have also developed a macroscale model where the state of a porous
medium is described by macrostate variables measurable through experiments. Recently, Lu and Hanyga
(2005) developed a linear isothermal dynamic model for a porous medium saturated by two immiscible
fluids. They obtained equation of motion in the frequency domain and calculated wave velocities and atten-
uations for three P-waves and one S-wave. Thigpen and Berryman (1985) presented a continuum theory of
mixtures for a porous elastic solid saturated by immiscible viscous fluids. Bedford and Drumheller (1983)
gave an extensive survey of continuum theories of mixtures of immiscible constituents. Schanz and Diebels
(2003) presented the governing equations for the mixture theory based on the Theory of Porous Media
(TPM-mixture theory extended by the concept of volume fractions) under the assumption of linear theory
in terms of small displacements and small deformation gradients. They have also derived linear constitutive
equations (Hooke’s law) and showed that the structure of governing differential equations in Biot’s Theory
and in Theory of Porous Media is the same and hence the wave forms predicted by these theories are equal.
Hanyga (2004) developed a general dynamical model for porous media saturated by two immiscible fluids.
The central idea of his theory is the use of one energy and one entropy for the porous medium as well as the
use of the concept of volume fraction from the mixture theory.

In the present paper we first discuss the low frequency wave propagation in a porous elastic medium sat-
urated by two immiscible fluids using the theory proposed by Tuncay and Corapcioglu (1997). We then
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present the calculations of reflection and refraction coefficients for longitudinal and transverse waves prop-
agating through the uniform elastic half-space and striking obliquely at the plane interface of elastic/porous
half-space. These coefficients are then used to find the expressions of energy ratios of various reflected and
refracted waves at the interface. Numerical computations have been performed for a particular model to
study the nature of dependence of these coefficients and of energy ratios on angle of incidence of the inci-
dent wave. The energy conservation at the interface is rigorously verified. The variations of velocities of
existing waves with some fluid parameters have been presented. Some problems of reflection and refraction
phenomenon have also been deduced as particular case of this formulation.

2. Field equations and constitutive relations
Following Tuncay and Corapcioglu (1997), the equations of motion in the absence of body forces for

low frequency wave propagation in a porous elastic medium saturated by two immiscible liquids, are given
by

{ps) a;:s = V((a“ + %Gfr>v U+ apVou +apV- llz)

+ V- (G V) + ¢ (v1 — v5) + c2(va — vy), (1)
(1) % =V(aaV -uy+anV -u; +anV -w) — (v —vy), (2)
<Pz>a;—;122 = V(a1 V -us +anV -u +auV-w) — (v — ), (3)

where

ann =Kpy,  an=ay =Ki0851(42 +K2)/D, a3 = a3 = Ky (1 = 1) (42 + K1),
an = K1S3(1 — o) (Kz +1;—12>/D7 arn = ap = KiKS8 (1 = 81)(1 — o) /D,
ay = Ky(1 — 81)*(1 — ocs)<Ks +(1f—251))/D’ D=K,(1—S8))+ 4, + K>S,

e = (1 =)’ /KKy, ¢ = (1 =) (1 —8,)1t/KK 2,

where K; and v; are the bulk modulus and velocity of fluid phase i, v is the velocity of solid phase, o is the
volume fraction of the solid phase, K is the intrinsic permeability of the medium and K, is the relative per-
meability of fluid phase i. Gy is the shear modulus of the porous solid whereas K, is frame or drained bulk
modulus. ug is the the displacement vector in the porous elastic solid and u, is the displacement vector in the
fluid phase i, {p;) is the volume averaged density of porous solid, (p;) and g, are the volume averaged den-
sity and viscosity of fluid phase i respectively, S;=oa/(1 —a;), (i=1,2) with S;+S,=1 and
Ay = %Sl(l —S1), where P.,, = P] — P35, P; is the intrinsic averaged pressures of fluid phase i and «; is
the volume fraction for the fluid phase i.

Introducing the scalar potentials ¢, y and #; vector potentials H, G and J through Helmholtz represen-
tation of vector as follows

uw=Vo+VxH V-H=0, 4)
W=Vy+VxG, V- -G=0, (5)
wnL=Vn+VxJ, V-J=0, (6)
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Inserting these values of vectors ug, u; and u, into Egs. (1)—(3), we obtain the following equations

(pg) aaz—t(f = aTlvzqﬁ +apVY 4 a Vi + ¢ (% — %) + ¢ <2—1t7 — %) , (7)
(p1) 662_;2# = ay VP + anV + anVin + ¢ (% - %) , (8)
(ps) Zz—t’;’ = a3 V2P + anVi + aVin + ¢ (% — %) , 9)
<ps>aaz—tlf: Gy V*H + ¢ @—(j—%{) +c2(%—aa—}tl), (10)
S =a(T-%), (1)
<pz>aaz—t;]=62(%{—2—”:), (12)

where aj; = a1 + % Gy

3. Wave propagation

Let us consider a plane wave propagating in the positive direction of a unit vector n in the form given by
{d, v, n} ={4,B,C}exp{ik(n-r —V1)}, (13)

where k is the wavenumber, V is the phase velocity of the wave and A4, B and C denote the amplitudes and r
is the position vector. Substituting Eq. (13) into Egs. (7)—(9), we get the following equations

(a;, K = 1(c1 + )0 — (p) )4 + (apk® + 1610)B + (a13k* + 16,0)C = 0, (14)
(a21k2 + IC]CO)A + (k2a22 — 1w+ <,01>CL)2)B + a23k2C = 07 (15)
(a31k2 + lCz(JJ)A + a32sz + (6133](2 — 1CHm — <p2>a)2)C =0, (16)

where w = kV is the angular frequency. A non-trivial solution of Eqgs. (14)—(16) exists if the determinant of
the coefficient matrix vanishes:

ZXP + 2, X+ 723X +Z4 =0, (17)
where X = % and the coefficients of Eq. (17) are given by,
_aa({p) £ (pa) + (o) — () {p1){pr)

Z >

_1ea{py)({p2) + <p31);:cl (p2)({p1) + <ps>), (18)
Z, = _dji(cica = (p1)(p2) ) Jg 2cicx(an + aiz + ax)

_an(cie — <Ps><Pz>w2)ajrza33(Clcz = (ps)(p1)e?)

_aulealpy) +ei{py) f2alzcl (pa) + 2a13¢2(p:)

_an(ea((pa) +{p)) + Cclo<ﬂz>) + azs(c2{pr) + a1{ps) + (p1))) 7 (19)

()]
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Zy = —d\(an(py) + az(p1)) — aiy(p2) — ais(py) + (py) (anaz; — a33)

2 2
_ lall(a22c2 + a3301) — apncy — 26112(612102 - 61336’1) —apic + 26113(0226’2 - 02361)

w
_, (e1 + &) (anas; — a§3) 7 (20)

w
Zy = ay,(anas — 923) - a%zan + ai3(2a12a2 — azan). @)

Similarly, we can take
{H,G,J} = {A,B,C}exp{ik(n-r — Vi}). (22)

Substituting Eq. (22) into Egs. (10)—(12) and putting the determinant of the coefficient matrix equal to zero,
we obtain

X*(ZsX + Zs) = 0, (23)
where
7 — ciea((p1) + (02) + (ps)) = (p){p1)(pa)
w2
_ lc2<p1>(<p2>+<ps>)+cl<p2>(<pl>+<ps>) (24)
w
7 —Gr(cier — 2<p1><,02>w2) N  Gr(eafpy) + e <P2>)7 (25)
w w

The coefficients given by (18)—(21), (24), (25) are the same coefficients as obtained by Tuncay and
Corapcioglu (1997) for the relevant analysis.
Using Eq. (13) into Egs. (4)—(6), we obtain

{ug,uj, w3} = {4, B, C}iknexp{ik(n-r — V¥)}.

This shows that the displacement vectors ug, u; and u, have the same direction as that of n. Therefore, three
waves with velocities given by Eq. (17) are compressional (longitudinal). The three roots of Eq. (17) de-
noted by X;, X» and X3 would then represent the velocities of first, second and third longitudinal waves
respectively. Similarly, substituting Eq. (22) into Egs. (4)—(6) and taking scalar product with n, we find that
ug -n = 0. Thus, the wave propagating with velocity X, (which is given by the root of Eq. (23)) is a
transverse wave. It can be seen that, if we put A, =0, the coefficient Z, vanishes. This shows that one
of the longitudinal wave is associated with the pressure difference between two fluid phases, i.e. capillary
pressure.
Following Tuncay and Corapcioglu (1997), the stress in porous solid is given by

2
<‘L's> = (aHV - Ug + a|2V - + al3v : 112)] + Gfr (Vlls + (Vus)T - §V : us]>a (26)

and the pressures in fluids are given by
<Tl> = (aZI + AV us + aZZV -up + a23V . llz)], (27)
(12) = (a1 + V- us + anV -uy + a3V - w)l, (28)

where [ is unit tensor matrix.
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The general displacement of the solid and fluids in x and z directions are given by

_0p OH _0¢ oH

Usy = a _gv U, = aZ ga (29)
oy 3G oy 9G

Uy = a_x - g; Uy = oz ox ) (30)
_on _on o (31)

T T T T

where ug,, Us., U1y, U;-, U, and u,. denote the displacement components in porous solid, first fluid and sec-
ond fluid respectively. The suffixes x and z denote their directions. H, G and J are the y-components of the
vectors H, G and J respectively. Taking {H, G, J}(x,z,t) = {H, G, J}(x,z)exp(—towt), we get the following
solutions of Egs. (11) and (12)

1iciH 3 1c,H

DL E L 32
et e’ ) et (e G2)

Considering Helmholtz representation of displacement vector in the uniform elastic medium, we have
the components

_ a¢e al//e _ ad)e + awe (33)

T oz T T

Uex

where i, and u,. are the components of displacement vector u, in the elastic solid along x and z directions
respectively. It can be shown that ¢, and . satisfy the following wave equations

1 &°¢ 1 oy
2 e 2 e
== =— = 34
where o = “2* and f* = £ are the velocities of longitudinal and transverse waves respectively; / and u are
the Lame’s parameters and p, is the density of the elastic solid.
The stress—strain relation in uniform elastic medium is given by
7o = AV - ud + 2u(Vu, + (Vu,)"), (35)

where the subscript ‘¢’ denotes the quantities in the uniform elastic medium.

4. Problem formulation and boundary conditions

We consider a plane interface along x-axis between a uniform elastic solid half-space and a porous elastic
solid half-space saturated by two immiscible fluids. The z-axis is chosen vertical to the interface and point-
ing downward into the porous half-space so that, the uniform elastic half-space occupies the region
—00 < Z <0 and porous half-space occupies the region 0 < Z < oo. We aim to attempt a reflection and
refraction problem in the two-dimensional x—z plane and the incident wave is assumed to incident obliquely
at the interface, after traveling through the uniform elastic half-space.

We assume that the two half-space separated by a plane interface along z =0 are in perfect con-
tact. Therefore, the boundary conditions at the plane interface are the continuity of stress components,
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displacement components and a condition preventing the flow of two fluids of porous solid into the uniform
elastic solid. The mathematical form of these boundary conditions at the interface z = 0 are:

(Te)e = Tz + (1) +(12)s (Te)oy = Tovs

Uex = Ugy, Ue; = Usz, Us; = U]z, Us; = Uz,

(36)

where superposed dot represents the temporal derivative.

5. Reflection and refraction of waves at a plane interface
5.1. Incident longitudinal wave

Let a train of longitudinal wave with amplitude A,y traveling through the uniform elastic medium be
incident at the interface z = 0 and making an angle 0, with the normal to the interface. This incident wave
will give rise to the following reflected and refracted waves.

In the elastic half-space: (1) a reflected longitudinal wave with amplitude 4.; making an angle 6, with the
normal to the interface; (ii) a reflected transverse wave with amplitude B, making an angle 6, with the nor-
mal to the interface.

In the porous half-space: (1) three refracted longitudinal waves with amplitudes 4y, 45> and 4¢3 and mak-
ing angles y;, 7, and y3 with the normal to the interface; (ii) a refracted transverse wave with amplitude By,
making an angle y, with the normal to the interface. Following Hajra and Mukhopadhyay (1982), the form
of potentials in the half-spaces are taken as:

In the elastic half-space:

¢, = Aco exp{iko(xsin Oy + zcos Oy — at) }
+ Ay exp{iko(xsin 0y —zcos0; — at)}, (37)
W, = Beexp{ik(xsin 0, —zcos 0, — fit)}, (38)

where ky = w/a and k; = w/p are the wavenumbers.
In the porous half-space.

¢ = As; exp{i[ks; (xsiny, +zcosy,) — wi]}, (39)
W = Agp exp{i[ks(xsiny, + zcosy,) — wt]}, (40)
n = As exp{ikg(xsiny; + zcosy;) — wt]}, (41)
H = By exp{i[ku(xsiny, +zcosy,) — wi]}. (42)

Using Egs. (26)—(31), (33) into the above boundary conditions (36) and inserting the expressions of
potentials given by (37)—(42) and the Snell’s law is given by

sinfly sinf; sinf, siny, siny, siny; siny,

o - o a ﬁ X] X2 X3 X4 ’

we obtain a set of six equations into six unknown. This set of equations can be written in matrix form as

PR =0, (43)

where P = {b;} is a matrix of order 6 x 6, with zero entries except for



S.K. Tomar, A. Arora | International Journal of Solids and Structures 43 (2006) 1991-2013 1999

] / 2
b]l = — (ﬁ + 2C05290), b12 = 2sin 00 ﬁ_ — sin 907

_ (autan+tan  Gi Gy . > ap +an +ayn\ o
by=|—"-—7"—" — ———sin“0y, b - | 32>
Ju 3u Ju X3

2 G . 2 .
brs — (M) L b = 9 in |2 — sin’60,
u X3 " X
= sin 20 by = i 2sin’0 by; = Grr sin 0, i — sin®6),
- 05 22 — ﬂz 05 23 — 1 0 Xl 0
Gfr . o2 ) .
bz() =——— |- 2Sll’l 6() b31 = Sin 0(), b32 = - = s 90, b33 = —SIn 9(),
2p B
by = i — sin®0 by = cos by = —sin 0 by = i — sin®6),
36 = X 0, ba1 = 0, by = 0, ba3 = X 0,
by = sinby, bs; = — sin 00, bsy = — — sm200, bsg = <>> sin 0,
1e1 + (py)
b63 1 l — sin 90, b65 = 1 l— — sin 90, b66 = %) sin 9(),

0 = {q;} and R = {R;} are column matrices of order 6 X 1. Their entries are given by

by

2 . .
q :;—&— 2co0s*0y, g, =sin20y, g3 = —sinfy, ¢, =cosly, ¢gs=qs=0,

A B Ay Ay A B,
Ri==", Ro="", Ry="", Ry=-"2, Rs=-", Rg=-—".
AeO AeO AeO AeO AeO AeO
Following Achenbach (1973), the rate at which the energy is transferred per unit area of the surface is given
by the scalar product of surface traction and the particle velocity. Thus, for the uniform elastic solid, the
rate of transmission of energy per unit area denoted by P; at the interface z = 0 is given by

P: - (‘Ce)xzi{ex + (‘Ce)zzileﬂ (44)

For the fluid saturated porous solid, the rate of of transmission of energy per unit area denoted by P} at the
interface z = 0 is given by

Py = (15) ity + (T5) Lt + Tritiz + Tolla. (45)

Using the appropriate potentials given by (37)—(42) and using Egs. (26)—(35) into the expressions given by
(44) and (45), one can obtain the average energy transmission per unit surface area. The energy ratios
denoted by E;, (i=1, 2,...6) give the time rate of average energy transmission for the respective wave
to that of the incident wave. The expressions of these energy ratios E; for the reflected P, reflected
SV, first refracted P, second refracted P, third refracted P and refracted SV-waves respectively are given
by
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1 o2
E\=R}, E,=R] o5l 1/ — sin’6y,
, B Gfr 011 , anf’ )
Ey =Ry —5—— —5 — sin 20y, E4= Ri———— |5 — sin"0y,
X2 cos 90 X1 Y uX2cos Oy \| X2

2 2 2
(l33ﬂ o . Gf .B
PR L — SlIlz()()7 2 d

— E¢=R——" — [— —sin’f,.
> uX?cos 0 \| X2 ¢ X2 cos b, \| X2 !

Es=

5.2. Incident transverse wave

Next, to discuss the reflection and refraction of transverse wave at the interface z = 0, we shall assume
the same geometry of the problem as considered earlier in case of incident longitudinal wave. Suppose a
train of transverse wave traveling through the uniform elastic solid becomes incident at the interface
z =0 at an angle 0, with the normal to the interface. This wave would give rise to exactly the same reflected
and refracted waves as described in case of incident longitudinal wave. We take the following potentials in
the elastic medium.

W, = Beo exp{iko(xsin Oy + zcos 0y — ft)},
+ Bej exp{iko(xsin 0, — zcos 0, — Bt)}, (46)

¢ = A.exp{ik;(xsin 0; — zcos 0 — at)}, (47)

where ky = w/f and k| = w/« are the wavenumbers, B is the amplitude of incident transverse wave with 0,
as the angle of incidence, B., is the amplitude of reflected transverse wave, 4. is the amplitude of reflected
longitudinal wave.

In the porous solid the potentials are taken as follows

¢ = Ag1 exp{ilks (xsiny, +zcosay) — wi]}, (48)
W = Ay exp{ikqa(xsiny, +zcosa,) — wi]}, (49)
n = Ag exp{ifkg(xsiny; +zcosoz) — wt]}, (50)
H = By exp{i[ks(xsiny, +zcosy,) — wi]}. (51)

where 41, Ay and Ay are the the amplitudes of the three refracted longitudinal waves and By, is the ampli-
tude of the refracted transverse wave, kg, = /X, (n = 1,2,3,4) are the wavenumbers of respective waves.

Substituting the potentials (46)—(51) with the help of (26)—(35), into the boundary conditions given by
(36) and making use of Snell’s law given by

sinfly sinf; sinf, siny, siny, siny; siny,

B a P X X, Xy Xy
we find that amplitude ratios satisfy the relation

PR=0 (52)

where P = {b;;} is a matrix of order 6 X 6, whose non-zero elements are given by
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2
by = {<i+2> ﬁ—— 2sin 60}, bi» = sin 20,,
u

- Gp Gy . 2
B3 — (all + ax +az f) p _ —fs1n290, <alz +an + 6132) /3_27
I 3u X3

2
_ _ Gr 0
5 — (a13 + ax + a33) ﬂ_z’ bro = 2t sin Gy S1n Gy — sin%0,,
u X3
2
521 = —2sin 0() ‘ / % — sinZHO, 522 = — COS 200,
T Gfr . ﬁz 22 T Gf ﬁ
byy = ——sinfyy|— —sin“Oy, by =—|—— 2sin’6,
u \ X3 2u \X?
by =sinly, by =cosly, by =—sinfy, b= 1/— — sin 6)0,
[ 22 /
541 = %— sin200, b42 = —sin 00, b4z = —2 — sin 60, b4(, = sin 00,
Xy
- ﬁz ) ﬁ (p1)o )
b :1/——s1n0, bsy = ——sm@, sin 6,
53 Xf 0 54 = % 0 101 + (o)) 0
= - (pa) ) :
bes = (/= —sin"0y, bgs = ——s1n9, bgs = | ———— ) sin 0,
63 Xf 0 65 = % 0 66 = zcz—i—( o 0

0 = {g,} and R = {R;} are column matrices of order 6 x 1. Their entries are given by
g, =sin20y, g, =cos20p, q;=cosbty, q,=sinby, ¢s=gs=0,

Ad. - Bg o Ag o A A By
Ry==2, Ri==", Ry==2, Rs==", Rg=="
BcO BcO

BcO BcO BcO ’ BCO
To consider the partitioning of energy at the interface between different reflected and refracted waves, we
proceed exactly similar to that in case of incident longitudinal wave. The expressions of energy ratios

E,(i=1,2,...,6) for the reflected-P, reflected-SV, first refracted-P, second refracted-P, third refracted-
P and refracted-SV waves are given as follows:

52 '\ [F e, m-R

1= ICOSQO o2 05 2 — Ry,

_ Gr _

E; = R2 an L —2—51n 007 Ey = 2 ﬁazz 2—sm 007
X cos@o X ,qucosﬂo X5

o G P

Es = R2 ﬁ 43 ﬂ —sin®0,, E¢= Ri L zﬁi ‘8 — sin’0,.

uX3cos90 2u X cos by

R, =

)
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6. Particular cases

(a) When one fluid out of two immiscible fluids is neglected then the problem reduces to the problem of
reflection and transmission of elastic waves at a plane interface between a uniform elastic half-space and
that of porous elastic half-space saturated by a fluid. In this case, we have S;=A4,=0, so that
a1, =ar» =asz =0 and ¢; = 0. With these values, one can verify that the boundary condition & = i,

at the interface z = 0 is automatically satisfied and the remaining five boundary conditions which can be
deduced from the matrix equation (43), can now be written as

5
Y bRi=q, (i=1,2,3,45), (53)
J=1

2 o?
by = —<p+2005200>, b1y = 2sin Oy, /ﬁ—— sin’6,

Gy G . 2
bz = <a11 ~aa + tr) a— — Csin’0p, by = <a13 - a33> (Lz,
I 3u) X7 n [ X3

Gfr . o2 ) . OC2 .2
bis =—sinlyy | —5 —sin"0y, by =sin20y, by =— — 2sin"0p,
15 1 0 Xi 0 21 0 22 ﬁz 0
Gfr . 052 ) Gfr 0(2 ) )
by3 = —sin Oy [— —sin"ly, bys = ———(—5 — 2sin"0; |,
23 1 0 X% 0 25 2/1, Xi 0
. o2 ) . o2 .2
b31 = Sin 00, b32 = - s 90, b33 = —SIn 00, b35 = > s 90,
p X
OCZ
b41 = COS 00, b42 = —sin 00, b43 = — — sin 60, b45 = sin 00,
— — sin 907 bsy = — —sin 00, bss = L sin 0y,
102 +{py)w

and ¢, = ﬁ—i— 2c0s?0y, q, = sin 20y, g3 = — sin Oy, q4 = cos 0y, g5 = 0. Eq. (43) gives the expressions of reflec-
tion and transmission coefficients for the relevant problem. Similarly, in case of incident transverse wave,
one can deduce from Eq. (52), the followings

> bR =g, (i=1,273,4,5) (54)
j=1
where
_ ) B _
b11 = |:( + 2) — — 2sin 00:| s b12 = sin 200,

- Gir G - ’
b13:<6111+a31+ f)ﬁ___fsngo7 bis :<a13+a33>_7

— Gy . / 2
bis :—fsm00 —5 — sin 00, by = —2sin 6, ﬁ—z—sm 0o,
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_ — Gfr . ﬁz .2 T Gfr (ﬁz 2 )
by = —c0820y, by =——sinlyy|— —sin"0y, bys=~—|—-5—2sin0p |,
22 0 23 u 0 X% 0 25 2 Xﬁ 0
[ p2
531 = sin 9()7 532 = COS 6(), 533 = —sin 90, 535 = )% — sinzﬂo,
4
P - L
b41 = - Sin 90, b42 = —SIn 00, b43 = 2 Sm 90, b45 = Sin 00,
o X
1
T ﬁz .2 T ﬁz ) % (pr)w p
b :1/——s1n0, bss = —\[— —sin"0y, bss = |———— ] sin b,
53 X% 0 54 X§ m Uy 55 10y + <p2>w 11 Ug

g, =sin20y ¢, =cos20y, ¢q;=cosly, ¢,=sinly,, ¢g;=0.

and

(b) If both the fluids in the porous half-space are neglected then the problem reduces to the classical
problem of reflection and transmission of longitudinal wave and transverse wave at a plane interface be-
tween two different uniform elastic half-spaces in perfect contact. In this case, we have a; = a, = 0, so that
S1 =8, = A4, =0. Using these values, one can deduce from Eqgs. (43) and (52), the well known expressions
of reflection and transmission coefficients for the relevant problem in each case.

7. Numerical results and discussion

In order to study the problem in greater detail, we have computed the reflection and transmission coef-
ficients and the energy ratios numerically for a particular model. For this purpose, we have taken the values
of relevant elastic parameters as follows:

In the uniform elastic half-space:

4 =12238 x 10" dyne/em?, u=2.992 x 10" dyne/cm?, p, = 2.65 gm/cm’,
o=557 km/s, f=23.36km/s.

In the porous elastic half-space:

Ky = 0.4 x 10" dyne/ecm?, K, = 0.95 x 10" dyne/cm?, K, = 0.1375 x 10" dyne/cm?,
K> =0.1156 x 10" dyne/cm?, Gy = 0.55 x 10" dyne/cm?, (p,) = 2.6 gm/cm®,
{p;) =0.82gm/cm’, (p,) = 0.92 gm/cm’.

Note that we have considered the porous medium saturated by two immiscible non-viscous fluids through-
out the numerical computations.

First, we solve Eqs. (17) and (23) numerically to obtain the values of velocities of three dilatational waves
and one transverse wave propagating in the porous medium. Since, we are considering the porous medium
saturated by non-viscous fluids, so we put u; = 0, which implies ¢; = 0. We shall make use of these values
while solving Eq. (17) numerically. We shall apply Cardon’s method to solve Eq. (17). Applying the trans-
formation Y = X + ¢, we obtain

VP4 3hY +g=0, (55)
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where

= —a), g:—a—a+ c),
h 3b — d? 21722 9ab + 27

a{m+@+@}
Ps  P1 P2

* 2 2 2
b= m(@+@>+<@) &+<@) &_@@+(@) Pal
Ps \P1 P2 P/ Ps Pr/) Ps  P1 P2 P2/ P1

o= {m(%a_s_@) _a_ﬁ@+m(2ﬂ@_&@)]
Ps \P1 P2 P1P2 PsP1 P2 Ps P1 P2 P2 P1
For all the three roots to be real A(=g>+ 4h%) < 0. Assuming A < 0, we obtain three roots of Eq. (55) as
follows:

Y, = 2v/—hcos (W2+(”_1)> n=1273,

o —

~— |. Hence we get

(n=1,2,3). (56)

Eq. (56) gives the expressions of velocities of three dilatational waves.
From Eq. (23), the velocity of transverse wave is given by

Gfr
Xy=y|—. 57
! Ps 57)

We have computed these velocities for different values of o, oy and Pr(= dj;?"). Fig. 1 depicts the variations

of velocities with Pr for oy = 0.08 and o; = 0.04. We note that longitudinal wave with velocity X decreases
monotonically with Pr, the longitudinal wave with velocity X, first remains constant in the range
0 < Pr < 2.8 and then decreases monotonically with Pr and the longitudinal wave with velocity X3 first in-
creases very slowly in the range 0 < Pr < 2.8 and then increases fast with Pr. Fig. 2 shows the variations of
velocities with oy, when oy = 0.04 and Pr = 0.30 Pa s and Fig. 3 shows the variations of velocities with o,
when oy = 0.08 and Pr = 0.30 Pa s. We note from Figs. 2 and 3 that the velocities of all the three longitu-
dinal waves are strongly influenced by the parameters o, and o;. However the velocity of transverse wave Xy
remains unchanged and is not influenced by any of these parameters at all as was expected beforehand. As
mentioned by Tuncay and Corapcioglu (1997), the longitudinal wave associated with the pressure difference
between the fluids has lowest phase velocity and high attenuation coefficient, therefore, the longitudinal
wave with velocity X3 is that very wave and exists due to the presence of second fluid in the porous medium.
The other two longitudinal waves with velocities X; and X, are similar to the velocities of ‘P fast’ and ‘P
slow’ waves exist in porous medium saturated by one liquid and discussed extensively by Biot (1956a,b).

Next, we have solved the matrix equations given by (43) and (52) by applying the method of Matrix
Inversion using a FORTRAN-77 computer program. The values of reflection and transmission coefficients
are computed against the angles of incidence for both longitudinal and transverse incident waves. The vari-
ations of these amplitude and energy ratios with the angle of incidence are shown graphically through Figs.
4-11.

The angular dependence of reflection/transmission coefficients for an incident longitudinal wave are
shown in Figs. 4 and 5. We notice from Fig. 4 that the amplitude ratio R, has value 0.78 near normal
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Fig. 1. Variations of velocities with Pr( dpc“”). (Curve I: Xj, Curve II: X5, Curve III: X3, Curve IV: Xy).
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Fig. 2. Variations of velocities with ALFAS (=ay). (Curve I: X;, Curve 1I: X;, Curve III: X3, Curve IV: X}).

incidence and thereafter decreases with increase of 0y achieving its value nearly zero at 0y = 75°. As 0, in-
creases beyond 75°, the value of R; increases sharply and approaches to its maximum value equal to 1.0 at
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Fig. 3. Variations of velocities with ALF1 (=o;). (Curve I: Xj, Curve II: X,, Curve III: X3, Curve IV: Xj).
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Fig. 4. Variations of amplitude ratios with angle of incidence of longitudinal wave. (Curve I: R, Curve II: R,, Curve III: R3).

0y =90°. The amplitude ratio R, has value nearly zero at normal incidence and goes on increasing with
increase of 0y achieving its maximum value near 60° and then decreases to the value zero as 0y approaches
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Fig. 7. Variations of energy ratios with angle of incidence of longitudinal wave. (Curve I: E4 x 10>, Curve II: Es, Curve III: Ej).
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Fig. 8. Variations of amplitude ratios with angle of incidence of transverse wave. (Curve I: R;, Curve II: R,, Curve III: R; x 10).
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Fig. 9. Variations of amplitude ratios with angle of incidence of transverse wave. (Curve I: R4 x 10, Curve II: Rs x 10% , Curve III: Ry).
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Fig. 10. Variations of energy ratios with angle of incidence of transverse wave. (Curve I: E|, Curve II: E,, Curve IIL: E; x 10).



2010 S.K. Tomar, A. Arora | International Journal of Solids and Structures 43 (2006) 1991-2013

1.00

0.95 —
0.90 —
0.85 —
0.80 —:
0.75 — 1
0.70 —
0.65 —
0.60 —:
0.55 —
0.50 —:

Energy ratios

0.45 —
0.40 —
0.35 —:
0.30 —]
0.25 —
0.20 —
0.15 —:
0.10 —j !
0.05 —
0.00 — T
0o 2

rrerrrrrerrerrrrrrr T T T T
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Angle of incidence

I
4 6

Fig. 11. Variations of energy ratios with angle of incidence of longitudinal wave. (Curve I: E4 x 10°, Curve II: Es, Curve III: E¢).

to 90°. The value of amplitude ratio R is found to be very small throughout the entire range of 6,. Its max-
imum value is 0.0308 at 8, = 1° and then decreases with increase in 6,, approaching to the value zero at
0o =90°. We note from Fig. 5 that the value of amplitude ratio R; has maximum value 0.002 at 0y = 1°
and then decreases with 6, getting its value equal to zero at 6y = 90°.

The variation of energy ratios of reflected and refracted waves with angle of incidence are depicted in
Figs. 6 and 7. Fig. 6 reveals that energy ratio E£; has maximum value at 6, = 1°. Its value then decreases
with increase of 0y and becomes zero at 6, = 75° after which its value increases sharply and reaching to its
maximum value equal to 1.0 at grazing incidence. The energy ratio E, has value zero at 0y = 1° and after
that its value increases continuously with increase of 0, attaining its maximum value at 0y = 76°. There-
after, its value starts decreasing and finally becomes zero at 0y = 90°. The value of energy ratio Ej is
found to be very small but non-zero in the entire range of 0, except at grazing incidence where its value
is zero. It retains almost constant value up to 6, = 80°, after which its value starts decreasing and ulti-
mately vanishes at 0y = 90°. Fig. 7 shows that the value of energy ratio E, is very small and it decreases
monotonically with increase of 0, and finally becomes zero at grazing incidence. The energy ratio Es be-
gins from a value 0.35 near normal incidence and it then decreases with increase of 0, and finally becomes
zero at 0y =90° angle of incidence. The value of energy ratio E4 has value zero at 6, = 1° and then in-
creases with increase of 6, attaining its maximum value in the range 70° < 6, < 80°, thereafter its value
decreases to vanish at 6, = 90°. It is clear from Figs. 6 and 7 that at grazing incidence, no other reflected
or transmitted waves appear, except the reflected longitudinal wave corresponding to the amplitude ratio
Rl-

In the case of incident transverse wave at the interface, a critical angle 6, is found between 37° < 6, < 38°.
Figs. 8 and 9 show the variations of amplitude ratios with angle of incidence. Fig. 8 shows that the ampli-
tude ratio R, begins with value zero at 0, = 0° and its value increases with increase of ;. The behavior of R,



S.K. Tomar, A. Arora | International Journal of Solids and Structures 43 (2006) 1991-2013 2011

and Rj; is almost similar. Both the amplitude ratios increase very slowly with increase of 0. From Fig. 9, we
observe that the amplitude ratios R, and Rs have value zero at normal incidence, thereafter their values in-
crease almost linearly with 0, but at different rates. As the angle of incidence 6, comes close to the critical
angle 0., both the amplitude ratios have a sudden jump in their values. The amplitude ratio Rs has maxi-
mum value at normal incidence and thereafter its value decreases as 0, increases. It is to be noted that the
value of amplitude ratio R4 is less than the values of amplitude ratio Rs in the range 0° < 0y < 37°. The
difference between their values increases with increase of 6.

Figs. 10 and 11 show the variation of reflected and refracted energy ratios with the angle of incidence of
transverse wave. We note from these figures that all the energy ratios increase with increase of 6, with a
slow rate except the energy ratios corresponding to reflected and refracted transverse waves. The energy
ratios corresponding to these waves exhibit a reverse behavior in the range 0° < 0y < 35°. Beyond this
range, their behavior is alike and decreasing. In the calculations of energy ratios, it has been verified that
sum of energy ratios is equal to unity. This shows that there is no loss of energy during transmission of
waves.

8. Conclusions

A mathematical analysis of reflection and refraction phenomenon of longitudinal and transverse waves
traveling through a uniform elastic half-space and striking with varying angles at a plane interface between
uniform elastic half-space and porous half-space saturated by two immiscible fluids. It is concluded that

(I) Three longitudinal waves and one transverse wave propagating with different velocities exist in a por-
ous medium saturated by two immiscible fluids.

(IT) Of three longitudinal waves, the two with velocities X; and X, corresponds to the P-fast and P-slow
waves in Biot’s theory, while the third longitudinal wave with velocity Xj is related to the capillary
pressure effect between the two fluids and it is found that X; > X, > Xj.

(IIT) When longitudinal or transverse wave is incident at the interface, the reflection and transmission
coefficients are found to be the function of angle of incidence. However, the nature of
dependence of these coefficients on angle of incidence is found to be different for different angle of
incidence.

(IV) When transverse wave is incident normally, there appears only one reflected wave corresponding to
amplitude ratio R, and only one refracted wave corresponding to amplitude ratio Rs. On the other
hand, when longitudinal wave is incident normally, there exist two reflected waves corresponding
to amplitude ratios R; and R; and two refracted waves corresponding to amplitude ratios R4 and
Rs. At grazing incidence of longitudinal wave, no other reflected or transmitted wave appears except
a reflected wave corresponding to the amplitude ratio R;.

(V) In both the problems, it is found that the sum of energy ratios is equal to unity. This shows that there
is no dissipation of energy during transmission.
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